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ABSTRACT 
An implicit method for the solution of transonic flows modelled by the time-dependent Euler equations is 
presented. The method is characterized by a robust linearization for first- and second-order versions of 
Roe's flux-difference splitting scheme, an implicit treatment of the boundary conditions and the 
implementation of an adaptive grid strategy for global efficiency. The performance of the method is 
investigated for the GAMM test circular-arc bump configuration and for the RAE 2822 aerofoil. 
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INTRODUCTION 

Propelled by the need for advanced elements to be used as primary design tools in aerodynamics, 
the CFD community has produced several codes based on the Euler equations for the simulation 
of compressible flows. Among the modern alternatives, there is a proliferation of schemes using 
unstructured triangular grids1−3, which have opened up new areas for flow simulation around 
complex geometries. This trend is mainly driven by the intrinsic ability of triangular grids to 
deal with general geometries and for the natural setting that they provide for the implementation 
of adaptive grid-flow coupling procedures. Meshes built-up of simplexes can be locally enriched 
or coarsened without affecting a large region of the domain. This is an appropriate way to 
achieve a suitable degree of accuracy with an affordable number of grid nodes. 

Despite the fact that much progress has been made in the implementation of the attractive 
grid-flow coupling, the question of the efficiency of such a coupling needs to be investigated 
further. Efficiency is not only related to the mesh layout, but also depends heavily on the time 
integration scheme. It is well known that in terms of the allowable time step implicit schemes 
are less restrictive than explicit algorithms. Implicit procedures have long been implemented in 
structured grid systems within the ADI framework4. For unstructured grid systems, there are a 
number of approaches: for example, point implicit algorithms, where a local matrix is solved 
for each element, have been suggested5,6, line implicit algorithms have been described7, which 
are a kind of generalization of the ADI algorithms; and implicit/explicit procedures have been 
proposed8, where some part of the domain is treated implicitly while the rest is integrated 
explicitly. 

In a comparative study of 2-D Euler solvers applied on triangular grids, Whitaker et al.9 have 
found that a fully implicit approach, coupled with an LU decomposition, seems one of the most 
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promising methods for achieving the steady-state solution. One of the alternatives investigated 
by these authors for solving the underlying equations is Roe's widely adopted flux-difference 
splitting method, either in its original first-order version10 or modified second-order versions2. 
However, it has been found that in many cases the implicit second-order extension of Roe's 
scheme appeared unstable and that a converged solution could not be obtained. There was no 
full explanation for this behaviour, however. The authors attribute the problems to the 
non-linearity of the limiter or to the inconsistency between the right and left members of their 
system of equations. 

In light of these findings, this work is aimed at addressing two objectives. The first one is to 
develop, in a finite-volume context with cell-centred flow properties, robust fully implicit first- and 
second-order versions of Roe's scheme. Barth's2 algorithm will be followed for the second-order 
extension. The second, is the investigation of the efficiency of the coupling of such an implicit 
procedure with a grid adaptation mechanism. 

To achieve the first objective, an implicit discretization and linearization in time is suggested, 
where all the Jacobian matrices involved are replaced by Roe's average matrix. The resulting 
equations are assembled through the entire domain, including a consistent implicit treatment 
of the boundary conditions represented via a system of equations. This global sparse-matrix 
system has been tackled using a direct LU solver. 

To achieve the second objective, a grid adaptation procedure has been implemented where a 
sensor based on the gradient of the flow variables is used as an a posteriori error estimate, and 
where, the remeshing is performed by means of local enrichment and coarsening of the grid. A 
simple methodology involving a sequence of solutions on a set of adapted and increasingly finer 
grids is proposed and investigated. 

The performance of the implicit scheme and of the adaptive methodology is evaluated by a 
comparison with the well-known GAMM benchmark11. This case enabled analysis of the implicit 
versus the explicit methodology, comparison of implicit and explicit treatments of the boundary 
conditions, study of the influence of the CFL number on the rate of convergence and analysis 
of the benefits of the adaptive grid procedure on the quality of the solution and on the global 
performance. Finally, the coupled grid adaptation-flow solver method was applied to the 
computation of the flow field around the RAE 2822 aerofoil. 

FLOW EQUATIONS 
In 2-D, the integral form of the unsteady Euler system can be written as: 

with: 

In these equations ρ stands for the density, p for the pressure, u and v for the two velocity 
components, E for the total energy per unit volume, and for the outward unit normal vector. 
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This system is closed with the equation of state for a perfect gas, that is: 

where γ is the ratio of specific heats. 

NUMERICAL SCHEME 
Spatial discretization 

Since the domain is subdivided into triangular elements, the semidiscrete counterpart of (1) is: 

where Ωe denotes the volume of the cell and Fs a numerical approximation of the normal flux 
crossing a face s with side length Δls. 

The expression for the flux Fs at a given interface s using Roe's scheme is: 

where Ã represents Roe's linearized Jacobian matrix10 and the subscripts L and R indicate the 
left and right states which share a face s. For a first-order scheme, the left and right states are 
simply the piecewise constant values in the adjacent cells of each elementary face. For the 
second-order extension, the piecewise constant solution is replaced by a linear one, according 
to the relation: 

where ÑQA represents the constant gradient of the solution on each cell and Ñr the local 
coordinates of a point within the element. In this expression, the parameter ΦA is a slope limiter 
used to avoid new maxima or minima2. For the current implementation, the gradient is evaluated 
by considering the triangle B-C-D illustrated in Figure 1. Additional details concerning this 
step can be found in References 2 and 14. 

Temporal discretization 
The steady-state solution of the hyperbolic system is obtained by an implicit formulation, 

with the discretization of the time-dependent term based on a backward first-order difference. 
Accordingly, (4) is expressed as: 

where ΔQe = Qm+1e − Qme denotes the increment in time of the cell-centred values, At the time 
step, and Rm+1e the residual given by the summation of the fluxes over the faces of the triangular 
cell. Along each face, the flux is given by (5), with the e and nb subscripts corresponding to the 
L and R subscripts. 

To solve the non-linear algebraic equation system resulting from (7), a linearization in time 
about the time level m is applied, yielding: 
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It can be appreciated that for a very large time step, the left-hand side term becomes negligible 
and the procedure reduces to Newton's method. Introducing the flux expression given by (5), 
written for the time level m, (8) becomes: 

with: 

At this point, and consistent with Roe's scheme, a further simplification is introduced, and 
Ame and Amnb are approximated by Ãms In the second-order case, linearly reconstructed values 
are used in the computation of Ãms. In so doing, the final implicit expression for the computation 
of the temporal increment ΔQ is: 

This equation relates four spatial variables (ΔQe and its three neighbours ΔQnb) per element, 
each of which includes the flow variables, Δρ, Δ(ρu), Δ(ρv) and ΔE. 

Boundary conditions 
A simple method for imposing boundary conditions for cell-centred schemes is to create image 

cells at the boundaries where the flow properties are initialized according to the type of boundary, 
and then, to apply the Riemann solver to compute the flux across these boundaries. This treatment 
makes it possible to take into account the incoming and outgoing characteristics. This approach 
is very easily implemented in an explicit scheme where the flow properties in the image cells are 
set at the beginning of each time step. For implicit schemes, this (explicit) treatment can also 
be used to set the flow properties in the image cells at the beginning of each implicit iteration. 
However, if large time steps are used, there will be a considerable time lag between the solutions 
and the boundary conditions. This may be a source of instabilities which can be avoided by 
applying a different treatment. 

In this study, a fully implicit version of image cell boundary conditions has been developed. 
Essentially, for each type of boundary, a system of equations is used to represent the boundary 
conditions. This, written for each boundary side, gives rise to additional equations that are 
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included in and solved with the global system. In the second-order version, linearly reconstructed 
values are used to ensure a proper imposition of the boundary conditions. 

Since the scheme is written in delta form, the boundary system sets the relations between the 
increments of the variables in the image cell with those in the boundary cells. This system can 
be written as: 

MeΔQe + MiΔQi = 0 (12) 
The subscripts i and e denote the image and element cells adjacent to a given boundary, as 

illustrated in Figure 2. The matrices Me and Mi depend on the type of boundaries and will be 
selected such that the correct number of characteristics is imposed at each boundary. 

Because some boundary conditions are applied in terms of the non-conservative variable 
increments ΔW = (ρ, ρu, ρv, ρ), the relation between these and the conservative variable 
increments, ΔQ = (ρ, ρu, ρv, E), must be first established. It can easily be found that the relation 
between these two sets of variables can be represented by: 

ΔQ = TΔW (13) 
where T is given by: 

and in which the pressure increment, 

obtained from the equation of state, has been used. 
Solid wall. For a solid wall, the required boundary condition is to impose a zero flux through 

the wall. This can easily be done by setting density, energy and tangential velocity increments 
to the image cell equal to those of the adjacent boundary cell, while the normal velocity increments 
to be imposed are of equal modulus but of opposite sign. The coupling matrices can thus be 
written as: 

where kx and ky indicate the components of the outward normal unit vector at the boundary. 
Subsonic inflow. At a subsonic inflow, three characteristics come from the outside of the domain 

and one comes from the interior12. To respect this characteristic's behaviour, the value of the 
pressure at the image cell assigned is that of the adjacent interior cell, while the remaining 
properties are computed by assuming an isentropic expansion from a hypothetical reservoir to 
the inlet. The flow angle must also be prescribed to ensure the completeness of the system of 
equations. 
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After some tedious manipulation, the coupling matrices can be obtained as follows: 

where q denotes the velocity modulus and α is the inflow angle. 
Subsonic outflow. In the case of a subsonic outlet, only the static pressure is imposed, while 

the remaining variables are extrapolated, that is: 

This system of equations, including the pressure (a primitive variable), can be written for the 
variable increments in time, ΔW = [Δρ, Δρu, Δρv, Δp]T, as: 

ΔWi = DΔWe (19) 
with: 

Finally, using (13), the boundary-condition system for the conservative variables becomes: 
MiΔQi + MeΔQe = 0 (21) 

with Mi − (TiD)−1, or explicitly: 
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Note that it is not necessary to inverse the above matrix, and that the matrix Me in (21) is 
the identity matrix negated. 

Supersonic inflow-outflow. For a supersonic inflow, the properties in the image cell are all 
imposed. Because these are known values, they are not included in the global matrix system. 
For a supersonic outflow, all the flow properties in the mirror cell are extrapolated from the 
adjacent interior cell. The increments are set equal to the increments of its neighbour cell and 
the coupling matrices are thus simply given by: 

Me= −Mi = I (23) 

Assembly and solution 
As mentioned earlier, this cell-centred triangular discretization implies four elementary (4 × 4) 

matrices per element. Therefore, the assembly of all the N elements, including the exterior image 
cells, generates a (4 × N) matrix system, and the global system, which is sparse because of the 
intrinsic character of the unstructured grid, can be written as: 

CΔQ = R (24) 
where C denotes the global (4 × N) matrix, R the residual and ΔQ the vector correction of the 
flow variables, i.e., [Δρ, Δ(ρu), Δ(ρv), ΔE]T. 

The method adopted to solve the system is based on a direct LU decomposition13. As a 
preprocessing step, element renumbering is applied to minimize the matrix profile. 

Due to the non-linear nature of the problem, the system represented by (24) has to be solved 
iteratively to converge to the steady-state solution. The main cost in the LU method is given 
by the decomposition step, particularly when the grid is fine and many equations are involved. 
To improve the global performance of the iterative process, the residual evolution was monitored, 
and after reaching a preestablished level14 (appropriate values were found after numerical 
experimentation), the global matrix C of (24) was frozen. This means that thereafter the solution 
simplifies to backward triangular substitutions plus residual updating. 

The convergence of the method was analysed by means of the L 2 norm of the residual R, 
weighted by the total number of equations: 

where ri denotes the residual of the ith equation. 

GRID ADAPTATION 
The underlying idea of grid adaptation is to use the minimum amount of elements for the 
discretization for a given precision. This goal can be achieved by applying some convenient type 
of error estimation. In the following, we will give a general description of the mechanism used 
in this work. 

Adaptive feedback loop 
The proposed adaptive feedback loop is very simple. A solution is first computed on an initial 

coarse grid. Then, a posteriori treatment of the solution is performed by estimating the error as 
being proportional to the difference between reconstructed piecewise linear and initial constant 
solutions. After this, a new grid size distribution can be obtained. In an attempt to equidistribute 
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the error, the number of triangles is allowed to increase by a user-specified factor (usually 1.5) 
and a new solution is computed on the adaptively regenerated grid. This remeshing process is 
stopped either when the required accuracy, or when a maximum number of allowed triangles, 
is reached. 

It will be noted that due to the intrinsic nature of compressible flow solutions, very high ratios 
of minimum and maximum required areas are obtained. This results in extremely small triangles 
in regions of high gradients of the solution. To overcome this problem, maximum and minimum 
triangles size limiters have been imposed as part of a global strategy. The limits on the smallest 
and largest triangle areas are specified in terns of a fraction of the initial grid, and are thus 
locally defined. 

The remeshing technique 
The algorithm which uses local grid refinement15,16, coarsening and cure techniques, has been 

followed for the remeshing process. Such a procedure is very efficient in cases where very few 
triangles need to be refined or coarsened at each remeshing step. The refinement is obtained 
through triangle subdivision, where a triangle is branched into two triangles by cutting it on its 
longest side. This process is performed on all the triangles requiring this option, and the 
reconnection of unmatched sides is performed last. In the case of a side located on a curved 
boundary, the new node inserted on that side is relocated on the boundary, so as to remain 
consistent with the geometric representation. The coarsening is performed through node removal. 
A node is selected to be removed if all its neighbouring triangles are to be coarsened. This node 
removal leaves an open polygon, which is then remeshed. A further advantage of such a remeshing 
technique is that the solution can be transferred simultaneously from the old to the new grid 
as the grid is adapted. There is no need for a subsequent interpolation step and the design of a 
conservative transfer operator is relatively easy. 

RESULTS 

GAMM-test case 
A study of the convergence rate was carried out for the well-known GAMM-test case11 for 

transonic flows. This consists of a parallel-walled channel with a bump along the lower wall. 
The free stream flows from left to right with an inlet Mach number of 0.85. The convergence 
tests are conducted on meshes comprising 1067 and 1955 triangles, hereafter called A-grid and 
B-grid, with a total of 571 and 1030 nodes and 11 and 19 nodes on the bump, respectively. 
These are shown in Figures 3 and 5 together with the computed solutions, illustrated in 
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Figures 4 and 6 by means of iso-Mach contours, using the second-order version of the scheme. 
In both simulations, the shock is well captured near the bump, but spreads out away from it. 

The effect of the CFL number. The properties of the C matrix appearing in (24) depend on 
the choice of Δt (or the CFL number). The influence of this parameter was therefore studied 
for the implicit method with Jacobian updating, CFL numbers of 1, 100, 500, 1000, 10,000 and 
100,000 were used for both the first- and second-order versions. In each case, the CFL coefficient 
multiplies the minimum time step given by the Courant-Friedrichs-Lewy criterion, to obtain 
the actual time step. 

In Figures 7a and 7b, the rates of convergence for the first-order scheme, in terms of the 
number of iterations for the different CFL numbers, are compared for the A- and B-grids 
respectively. These plots indicate that for a CFL number between 1 and 500 the convergence is 
slow, but, as the CFL number is increased, convergence is obtained in fewer and fewer iteration 
steps. In fact, for CFL numbers of 1000 and 10,000 for the A-grid and 10,000 and 100,000 for 
B-grid, convergence is reached (log || R || = −8.5) after approximately, 38 and 31 iterations 
respectively. Note that the convergence rate does not behave linearly. 

The second-order convergence plots are shown in Figures 7c and 7d. The behaviour is now 
different, since the rate of convergence increases up to a certain limit in the CFL number and 
then decreases if the CFL number is raised further. For the A-grid, the maximum rate of 
convergence was found to be around CFL = 1000. However, even if the rate of convergence is 
lower for CFL = 10,000, a further increment of this parameter (for example, CFL = 100,000 
was tried) does not modify the convergence behaviour any more, and divergence is never observed. 
Fot the B-grid, a similar pattern is found. The best rate of convergence is found to be around 
CFL = 10,000, after which this rate weakens with a limit represented by the curve for 
CFL = 100,000. 

Although not fully equivalent, a qualitative comparison can be attempted between these 
convergence results and those presented by Whitaker et al.9 for the fully implicity LU method. 
In this case, grids with 1005 and 1999 elements, comparable to the A- and B-grids presented 
here, were used. For the A-type grid and for the first-order scheme, convergence was reached 
around 80 iterations steps, while for the second-order extension, about 1400 iterations were 
needed to achieve (approximately) log || R || = −8.5. For the B-type grid and for the first-order 
scheme, the number of iteration steps required to approach the steady-state solution remained 
almost constant. However, for the second-order scheme, the results do not show convergence. 

On the contrary, for the first- and second-order versions of the scheme presented here, 
convergence was always found with the iteration count not exceeding the value of 60. The 
robustness of this procedure is attributable to the type of linearization and to the implicitness 
with which the boundary conditions are imposed. 
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Implicit vs. explicit CPU time. Besides the accuracy of the solution, a fundamental question 
concerning the performance of a method is the CPU time requirement. In this respect, convergence 
rates between explicit and implicit computations, with and without Jacobian reuse, as a function 
of CPU time have been studied. 

A first series of plots in Figures 8a and 8b show the rates of convergence for all three time 
integration methods used with the first-order version of the scheme. From these Figures, it can 
be clearly seen that the best scheme for reaching the steady-state solution is the implicit one 
with Jacobian reuse. Also, in both Figures, the influence of the standard explicit treatment for 
the boundary conditions, that is, using time-lagged variables at the boundaries, versus the implicit 
treatment described earlier is presented. These alternatives were evaluated using Jacobian 
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updating during calculation. For the A-grid, the difference is negligible, while for the B-grid, a 
small improvement is obtained when an implicit boundary condition procedure is used. 

This kind of investigation was repeated for the second-order scheme. The results depicted in 
Figures 8c and 8d indicate once again that the implicit method with Jacobian reuse yields the 
best performance. In particular, for the B-grid, the implicit approach is about seven times faster 
than its explicit counterpart. For this second-order version of the scheme, the study of implicit 
versus explicit boundary condition treatment reveals that the benefit of implicit handling is more 
pronounced as the number of elements increases. 

Grid adaptation. The quality of the solution computed after the second-order scheme was then 
studied in terms of the grid adaptation procedure. A flow simulation was performed using grid 
adaptation and the sequence of grids generated is depicted in Figure 9. This sequence of grids 
indicates that coarse elements arise in regions of weak gradients, while small triangles occur 
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near the shock. The corresponding solutions are illustrated by means of Mach number contours 
in Figure 10. From this it can be seen that the shock narrows as the grid is adapted and that 
it remains narrow away from the bump. This behaviour reveals that the enrichment-coarsening 
strategy is well founded. Table 1 gives details of the adaptation steps. 

In Figure 11, the pressure coefficient Cp on the lower wall of the channel, calculated with 
and without grid adaptation, is compared with the results from Reference 11 which were obtained 
using a 72 x 21 structured mesh with 42 nodes on the bump. Both of these computations agree 
well with the workshop results, the one using the adaptive grid strategy being closer, particularly 
in the vicinity of the shock. 

From the point of view of the efficiency, the method using adaptive grids produces a speed-up 
in the calculation time. In fact, the B-grid (Figure 5) required about 18.4 sec/iteration, while in 

Table 1 Details of the sequence of meshes 

Mesh 

1 
2 
3 

Elements 

445 
655 
966 

Nodes 

246 
349 
509 

Nodes on bump 

6 
17 
21 

CPU/iteration 

2.8 sec 
4.2 sec 
9.1 sec 
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applying the adaptive grid strategy, 16.2 sec/iteration were needed. Although the gain in CPU 
time per iteration is not dramatic, fewer iterations are needed in the adaptive strategy since the 
solutions are transferred between grids. Also, the quality of the solution is considerably improved, 
and much less memory is required than with the fixed grid. 

RAE 2822 aerofoil 
A final test was undertaken to compute the flow over the RAE 2822 configuration using the 

second-order scheme combined with the grid adaptation mechanism. This calculation was 
performed with a free-stream Mach number of 0.75 and with an angle of attack α = 2.8°. 

Figure 12 depicts the initial mesh and the final mesh obtained after 6 cycles of adaptation, 
which is composed of 3967 elements and 2026 nodes with 65 over the aerofoil. The grid density 
of the final grid is high in regions of strong gradients, which the leading edge and the shock 
neighbourhood are. The solutions computed using both of these meshes are illustrated in 
Figure 13 by means of Mach number contour plots. The benefit of using grid adaptation is 
obvious. 

The pressure coefficient distribution is compared with the experimental data in Figure 14. The 
simulation results agree well with the experimental data on the pressure side, but there are some 
discrepancies on the suction side. In particular, the peak at the leading edge is not fully predicted 
and the shock intensity and position differ from those in the data. To be more specific, from 
Figure 14 it can be appreciated that this solution predicts a shock position around 70% of the 
cord instead of the 55% as given by experimental data. This phenomenon has been blamed on 
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the model, which cannot take into account the viscous effects and the shock-boundary layer 
interaction taking place. In the GAMM workshop for transonic flows11, this supercritical flow 
was simulated by several authors using Euler solvers. They all obtained a similar pattern, 
predicting a shock location in the range of 75-85% of the cord. 

CONCLUSION 
A fully implicit method for the steady-state solution of the Euler equations has been implemented 
using Roe's approximate Riemann solver in a finite-volume framework. A particular linearization, 
tailored for Roe's scheme, has been developed and a new implicit treatment of the boundary 
conditions has been designed. This has led to robust first- and second-order schemes allowing 
the use of high CFL numbers to obtain a converged solution in a minimum of time. The system 
of algebraic equations was solved directly at each time level by the LU factorization method. 

A comparison of the explicit method with two implicit approaches was carried out for the 
two versions of the flow solver. The implicit procedures differentiate between them, and depend 
on Jacobian updating or Jacobian reuse. In all cases, the implicit method with Jacobian reuse 
was found to be the most efficient. Common time-lagged boundary conditions and implicit ones 
implemented via a matrix formulation were analysed. The results indicate that an implicit 
handling of the boundary conditions consistent with the implicitness of the scheme produces 
better results. A study of the rate of convergence in terms of the CFL number revealed that 
optimal values of the time step depend on the order of the scheme. However, the choice of very 
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high CFL numbers always leads to a converged solution much more efficiently than using an 
explicit scheme. 

Unstructured triangular grids have been used, allowing efficient grid adaptation as the solution 
develops. The mesh is refined to resolve fine structures, and coarsened in regions where the 
solution is smooth. The solution-adaptive grid strategy was first studied in the parallel-walled 
bump test case and then on the RAE 2822 aerofoil. In both cases, the result is a non-uniform 
grid density providing a good level of accuracy at a lower cost than a fixed grid. 
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